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Locality Analysis by
Synthesizing Symbolic Reuse Intervals

Dong Chen
Independent Researcher

Abstract
As the complexity of the memory system grows, the demand
to efficiently and precisely describe data movement is in-
creasing. The past static techniques through complex math-
ematical models are often limited to linear expressions, and
solving for a performance number requires approximation.

In this paper, we address the locality analysis problemwith
input-output-example-based program synthesis. We first pro-
pose three specifications to describe reuses and the struc-
tures of their input-output examples. Then for synthesizing,
we adopt the unification search with a carefully designed
elimination-free DSL, and reuse-type inferred, code-structure
inferred biases. The produced programs summarize the lo-
cality. We report the synthesized symbolic reuse intervals
for 30 programs in PolyBench. Predicted miss ratio curves
compared with tracing are presented.

1 Introduction
High-Bandwidth Memory (HBM) and Non-Violate Mem-
ory (NVM) extend and enhance the traditional DRAM-only
system with a larger size, lower energy consumption, non-
violate, lower latency, and higher bandwidth. But efficiently
and effectively using a variety of memory in a system is not
an easy task. It is challenging for both system designers who
want to make the complex memory system transparent to
users and the application developers who want to manu-
ally achieve the hardware’s peak performance. Intel Optane
provides a software-defined memory to use NVM as part of
the system memory, which is transparent to the operating
system [17]. NVIDIA provides a unified memory interface
for programming GPUs with HBM [1]. But at the same time,
both of the vendors provide programming interfaces that al-
low some degree of program control from the programmers,
like clwb, clflush instructions from Intel and memory advises,
prefetch instructions from NVIDIA.

Though understanding and optimizing memory or cache
performance is not a new task, its importance is growing
when the complexity of the memory system increases. To
characterize data access locality, there are three fundamental
metrics: working set size (WSS) [12], reuse distance or LRU
stack distance (RD) [24], and reuse interval (RI) [39].
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• WSS is the number of distinct memory addresses within
a given length of a memory access trace.
• RD is the number of distinct memory addresses between
two consecutive accesses to the same memory address.
• RI is the number of memory accesses between two
consecutive accesses to the same memory address.

RI removed the requirement of distinction compared to RD.
It enables collecting RI in linear time 𝑂 (𝑛) while collecting
𝑅𝐷 needs 𝑂 (nlog(m)) time. 𝑛 is the length of the memory
access trace and 𝑚 is the data size. Collected reuse inter-
val/distance histograms (RIH/RDH) drives WSS. Their relation
is summarized in [41]. With the above metrics, the perfor-
mance of memory accesses is often presented in the form of
miss ratios.
The other benefit of using RI instead of RD is that reuse

intervals are composable. The interleaving of two memory
access traces will only lengthen their RIs without changing
the reuse relations if there is no sharing data between them.
With composability, the analysis for RIs can be performed on
each array in the program separately and merged afterward.
This feature is handy for static analysis as we only need to
focus on partial code related to a single array. In this paper,
we focus on the static analysis based on RI.

Unlike static analyses that ensure the correctness of pro-
gram transformations, static locality analysis can be statis-
tical and does not require 100% precision to be valid. The
problem can be formulated as discovering the relation be-
tween loop codes to locality metrics.

WSS/RIH/RDH = 𝑓 (loopCode)

All the past techniques [5, 9, 10, 13, 19, 38] have certain
approximations for a limited set of loop structures. The state-
of-art static approaches analyze loops that are Static Control
Part (SCoP) [6] with the relaxation of allowing non-linear ex-
pressions. From the code, they build equations and solve for
different loop-bound values. The solving process is usually
expansive as they often require solving integer linear pro-
gramming (ILP) problems [5, 8]. It can be seen as discovering
the following relation:

WSS/RIH/RDH = 𝑓ILP (loopCodeSCoP)

Though the high-level intuitions are clear for static locality
analysis, discovering a 𝑓 that is accurate and solvable needs
a lot of work. But with this abstraction, program synthesis
may be an excellent candidate to discover 𝑓 automatically
with the proper encoding.
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In this paper, we are addressing static locality analysis for
loop-based code through the input-output-example-based
program synthesis. We target loopCodes with branches but
no indirect memory accesses and no data dependent con-
trols. The high-level function 𝑓 for locality we are trying to
discover is shown as follows:

Examples← loopCode

RIH = 𝑓DSL (Examples).
Instead of building equations directly from the code, we first
profile the code to generate a set of input-output examples to
encode the relation between symbolic bounds

⃗⃗
B and reuse in-

terval RI. Then from the Examples, we search for a program
in a provided domain-specific language DSL that satisfies all
input-output examples.

Loop with symbolic bounds [B0, B1, …, Bn]
[B0, B1, …, Bn] ← (C0, C1, …, Cn) Profile per reference and per iteration RI 

in Format  
(RefIDSrc, IterVecSrc, RefIDSnk, IterVecSnk, RI)

Input-output examples in format 
(“Ii” ← IterVeci, “Bi” ← Ci, “_out” ← RI)

Generate input-output examples

Run synthesizer Per reference and per iteration 
symbolic RI: prog(I, B)

Input-outputs Generator

Synthesizer

Predictor

 Structured Input-outputs

Symbolic RI histogram

RI histogram

(1) Loops with symbolic bounds
(2) Set of training sizes

(4) Specifications

(6) Sizes for Prediction

(3) Sampling rate

(5) DSL

Input-outputs Generator

Synthesizer

Predictor

 Structured Input-outputs

Symbolic RI histogram

RI histogram

Loops with symbolic bounds B

Set of training sizes

Specifications

Sizes for Prediction

Sampling rate

DSL

Figure 1. System framework

We design our system as Figure 1 shows. It contains three
parts:

Input-output example generator. This generator takes
the loop with symbolic bounds

⃗⃗
B and generates structured

input-output examples for reuses. Different training sizes
for
⃗⃗
B and different sampling rates for loop iterations can be

provided.

Synthesizer. With the set of structured input-output ex-
amples, we run the synthesizer for each input-output ex-
ample. The synthesizer takes a domain-specific language
(DSL) and uses a bottom-up search with unification to find a
program that satisfies all input-output examples. Different
specifications will lead the synthesizer to find different pro-
grams. By merging all the synthesized programs, we get a
symbolic reuse interval histogram for the loop with

⃗⃗
B.

Predictor. With synthesized symbolic RI histogram, we
can feed in different

⃗⃗
B values and directly calculate their RI

distribution in constant time.
The organizations and contributions of this paper are

listed as follows:
• We first exam the relation between code structure and
reuse by dependence distance in Section 2. From the

relation, we propose three specifications for 𝑓DSL and
their input-output-example structures in Section 3.
• We then implement and present the first input-output-
example-based program synthesis framework (tool)
for static locality analysis in Section 4.
• Section 5 reports the symbolic reuse interval histograms
for 30 programs in PolyBench. The overhead and pre-
cision are discussed.

2 Relation between data reuse and data
dependence

Data Reuse. Reuse happens when there are two consecutive
accesses to the same memory location. By scanning a mem-
ory access trace, we can easily identify all reuses. Figure 2a
shows a 5-point stencil loop with five references to array
a and one reference to array b. Figure 2c shows its mem-
ory access traces in element granularity (elm) and cache
line granularity (cl). Eight elements share one cache line
in cache line granularity. One reuse happens for element
a[1][2] with reuse interval 5 (calculated by 7 - 2) in elm for
the first eight accesses. In contrast, five reuses happen for
cache line a[1][0∼7] with reuse intervals 1 and 4 in cl. The
RI distributions for the first eight accesses are 100% for 5 in
elm and 75% for 1, 25% for 4 in cl.

Data dependence. The data dependence exists between two
references when references have accessed the same data with at
least one write and there is a feasible run-time path from one to
the other [18]. Data dependence guides loop transformations
and ensures the data is produced and consumed in the correct
order. For the code shown in Figure 2a, data dependence only
exists when different elements in array b share the same
cache line.
It is useful to quantify the distance ⃗⃗𝑣 between a depen-

dence source reference Refsrc at iteration
⃗⃗
I src and its sink

reference Refsnk at iteration
⃗⃗
I snk by the number of iterations

in between.
⃗⃗
𝑣
Refsnk
Refsrc

=
⃗⃗
I snk −

⃗⃗
I src

Figure 2b shows the dependence distances for all references
that read array 𝑎. They will not form a dependence as there
is no write. But it is useful when we are trying to connect
reuses with dependences.

Relation. Data reuse and data dependence share two re-
quirements: (1) Both of them require at least two memory
accesses. Reuse requires exact two accesses, and dependence
requires at least one access for each statement (reference).
(2) The location of the two memory accesses should be the
same.
Besides shared requirements, both concepts have condi-

tions that distinguish one from the other. Reuse requires
consecutive accesses, while dependence does not care about

2
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(a) 5-point stencil kernel
// a, b are matrices with size (B+2)*(B+2)
for (int i = 1; i < B+1; i++)

for (int j = 1; j < B+1; j++)
b[i][j] = a[i][j]+a[i][j+1]+a[i][j-1]

+a[i-1][j]+a[i+1][j];

(b) Dependence distance (read-after-read dependence [27])
Snk/Src a[i][j] a[i][j+1] a[i][j-1] a[i+1][j] a[i-1][j]
a[i][j] - (0, 1) - (1, 0) -

a[i][j+1] - - - (1, -1) -
a[i][j-1] (0, 1) (0, 2) - (1, 1) -
a[i+1][j] - - - - -
a[i-1][j] (1, 0) (1, 1) (1, -1) (2, 0) -

(c) Access traces for element-granularity (elm) and cacheline-granularity (cl)
i: 1 1 1 1 1 1 1 1 ...
j: 1 1 1 1 1 1 2 2 ...
References: a[i][j] a[i][j+1] a[i][j-1] a[i-1][j] a[i+1][j] b[i][j] a[i][j] a[i][j+1] ...
Logic time: 1 2 3 4 5 6 7 8 ...
Trace (elm): a[1][1] a[1][2] a[1][0] a[0][1] a[2][1] b[1][1] a[1][2] a[1][3] ...
Trace (cl): a[1][0∼7] a[1][0∼7] a[1][0∼7] a[0][0∼7] a[2][0∼7] b[1][0∼7] a[1][0∼7] a[1][0∼7] ...

Figure 2. Relation between data reuse and data dependence

intervening accesses from other references. Dependence re-
quires at least one write, while reuse does not care about
whether the access is a read or a write.

By comparing those two concepts, we summarize their
relation: reuse happens at the dependence sinkwith the short-
est dependence distance, and dependence happenswhen there
is at least one write in a cross-reference reuse.

As Figure 2b shows, we analyze the dependence distance ⃗⃗𝑣
for all references to array a (read-after-read dependence [27]).
For the column a[i][j+1] as source reference, there are three
sink references with positive distance vectors: (0,1) for a[i][j],
(0,2) for a[i][j-1], and (1,1) for a[i-1][j]. The shortest depen-
dence distance is (0, 1) so the reuse is formed between a[i][j]
and a[i][j+1] for elm.
Based on the dependence distances, we can easily define

shortest dependence distance
⃗⃗ ⃗⃗⃗
𝑠𝑣 Refsrc .

⃗⃗ ⃗⃗⃗
𝑠𝑣 Refsrc = min

∀Refsnk
( ⃗⃗𝑣 Refsnk

Refsrc
)

It is the minimal distance among distances ⃗⃗𝑣 from the same
source reference Refsrc to all its sink references Refsnks. It
indicates element granularity reuses.
A careful reader may notice that for different iterations,

the number of valid ⃗⃗𝑣 Refsnk
Refsrc

will be different. It means that
for different iterations, ⃗⃗ ⃗⃗⃗𝑠𝑣 will be different even for the same
source reference Refsrc. For example, for Refsrc a[i][j] in
Figure 2b, there are two sink references a[i][j-1] and a[i-1][j].
For iteration 1 ≤ 𝑖 ≤ 𝐵, 1 ≤ 𝑗 < 𝐵, ⃗⃗ ⃗⃗⃗𝑠𝑣 equals to (0,1); for
iteration 1 ≤ 𝑖 ≤ 𝐵, 𝑗 = 𝐵, ⃗⃗ ⃗⃗⃗𝑠𝑣 equals to (1,0) as (0,1) is not
valid for these iterations.

Unlike element-granularity reuse, cache-line-granularity
reuse can happen between different array elements if they
share the same cache line. It can be formulation by extending
the above equation with data position in cache (Pos) infor-
mation. As cache line size (cls) is usually larger than data

size (ds), different array elements may fall into different po-
sitions in a cache line. We number the positions Pos from 0
to 𝑐𝑙𝑠

𝑑𝑠
− 1. The relation between dependence distance ⃗⃗𝑣 Refsnk

Refsrc
and dependence distance at specific source/sink positions⃗⃗
𝑣
Refsnk,Possnk
Refsrc,Possrc

can be formulated as the following:
⃗⃗
𝑣
Refsnk,Possnk
Refsrc,Possrc

=
⃗⃗
𝑣
Refsnk
Refsrc

+ (0, .., 0, Possnk − Possrc)
Note that this calculation assumes the innermost loop ac-
cesses the array continuously and ⃗⃗𝑣 Refsnk

Refsrc
quantifies the itera-

tion different between Possrc = 0 and Possnk = 0. Otherwise,
it will need more sophisticated mathematics.
Then the shortest dependence distance for source refer-

ence Refsrc in position Possrc can be formulated as the mini-
mum distance among all possible sink references Refsnk and
cache line positions Possnk.

⃗⃗ ⃗⃗⃗
𝑠𝑣 Refsrc,Possrc = min

∀Refsnk,Possnk
( ⃗⃗𝑣 Refsnk,Possnk

Refsrc,Possrc
)

With the shortest distance, the reuse interval RI associated
with it can be derived by multiplying ⃗⃗ ⃗⃗⃗𝑠𝑣 with the number of
references per iteration.

Inspirations for synthesis. Though we find the relation
between reuses and dependences, calculating reuse intervals
requires precise dependence distance vectors. Unfortunately,
it is hard to derive the distance vectors when the loop struc-
ture is complex. Even for these two indices 𝑖 and 2∗ 𝑖 , we can
not summarize the distance as a constant for all iterations.
But for a specific 𝑖 iteration, we always calculate a distance
as a constant and then find a representation to summarize
all iterations.
With the above observation and the equations for ⃗⃗ ⃗⃗⃗𝑠𝑣 , we

identify factors that determine a RI at a specific iteration.
The following four factors are sufficient to locate a specific
access/reuse/RI for a given loop:

1. The symbolic loop bounds
⃗⃗
B.
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2. The data position in cache Possrc.
3. The source reference Refsrc.
4. The source iteration

⃗⃗
I src.

Because (1) The values of symbolic bounds
⃗⃗
B determine the

number of memory accesses in each loop, determining the
memory access trace in element-granularity for a given loop.
(2) The data position in cache Possrc reflects the data align-
ment. Combined with

⃗⃗
B, the cache-line-granularity memory

access trace is fixed. (3) The source reference Refsrc and
its source iteration

⃗⃗
I src locate a specific access to an array

element. For a given trace, locating one access also finds its
forward reuse interval.

The last three factors above are all for the source reference.
We can have a dual formwith sink reference if we are locating
backward reuse intervals.

1. The data position in cache Possnk
2. The sink reference Refsnk.
3. The sink iteration

⃗⃗
I snk.

Possnk encodes data alignment as Possrc does. Refsnk and⃗⃗
I snk locates the second access in a reuse. This also indicates
the ⃗⃗ ⃗⃗⃗𝑠𝑣 can be formulated in the other way around from the
forward ⃗⃗ ⃗⃗⃗𝑠𝑣 Refsrc,Possrc to backward ⃗⃗ ⃗⃗⃗𝑠𝑣 Refsnk,Possnk .

With factors identified, the problem of finding a 𝑓 can be
formulated as finding a program PROG written in a Domain-
Specific Language (DSL) with the above factors as variables.

3 Specifications and Their Structured
Input-output Examples

To automatically find a PROG for a reuse interval, we need
specifications to describe the program’s structure and input-
output examples for the synthesizer to describe the pro-
gram’s behavior. This paper focuses on finding the relation
between reuses and the loop bounds with fixed alignment.
So we do not add Pos to the variables in PROG.

3.1 Specifications
We propose three specifications for a program PROG that
describes a reuse interval RI in the following format:

RIidentifier=constant = PROG(variables)
A identifier locates a specific reuse interval by providing
concrete values for the factors that determine a reuse inter-
val. variables list all variable symbols that are allowed to
appear in the program PROG.

Spec-src: source-only. This specification is trying to cap-
ture the relation between reuse interval RI and loop bound
variables

⃗⃗
B only by the factors related to the source reference.

As Equation 1 shows, source reference id 𝑐0 and a specific
iteration ⃗⃗𝑐 1 locates a reuse interval. Program’s variables in-
clude all symbols from the source iteration vector and loop
bound variables.

RIRefsrc=𝑐0,
⃗⃗
I src=

⃗⃗
𝑐 1

= PROG(
⃗⃗
I src,

⃗⃗
B) (1)

Spec-src-snk: source-sink. This specification adds one
more factor, the sink reference Refsnk, than Spec-src as
Equation 2 shows. The variable list takes the same set of
symbolic variables as the programs specified by Spec-src.

RIRefsrc=𝑐0,
⃗⃗
I src=

⃗⃗
𝑐 1,Refsnk=𝑐2

= PROG(
⃗⃗
I src,

⃗⃗
B) (2)

As different
⃗⃗
B values may change the sink reference of a reuse

even if we fix Refsrc and
⃗⃗
I src. Fixing Refsnk reduces the

diversity of the values of a RI. This specification simplifies
the task of finding a program to capture reuses from a single
source to all candidate sink references to a specific sink
reference.

Spec-src-snk+: source-sink-enhanced. This specifica-
tion uses the same factors as Spec-src-snk does to locate
a reuse interval. But it further suggests to use additional
symbols

⃗⃗
I snk in the variable list for the PROG as Equation 3

shows.
⃗⃗
I src and

⃗⃗
I snk together enable the opportunity to dis-

cover a PROG calculates the reuse interval through iteration
difference

⃗⃗
I snk −

⃗⃗
I src.

RIRefsrc=𝑐0,
⃗⃗
I src=

⃗⃗
𝑐 1,Refsnk=𝑐2

= PROG(
⃗⃗
I src,

⃗⃗
I snk,

⃗⃗
B)

⃗⃗
I snk = PROG′(

⃗⃗
I src,

⃗⃗
B)

(3)

Specification for f. With the above specifications for a
specific RI, we can define 𝑓 as a collection of programs for
RIs from all references in all iterations to form a reuse inter-
val histogram RIH. With Spec-src, the RIH can be defined
as:

∀Refsrc ∈ 𝑅,
⃗⃗
I src ∈ 𝐼𝑆 : RIRefsrc,

⃗⃗
I src
(
⃗⃗
B).

And with Spec-src-snk or Spec-src-snk+, the RIH is

∀Refsrc, Refsnk ∈ 𝑅,
⃗⃗
I src ∈ 𝐼𝑆 : RIRefsrc,

⃗⃗
I src,Refsnk

(
⃗⃗
B).

R is the set of static references in a program, and IS is the
iteration space of the source reference. For a loop code with
𝑛 references and 𝑡 iterations, RIH will have a collection of
𝑂 (𝑛𝑡) programs with Spec-src and 𝑂 (𝑛2𝑡) programs with
Spec-src-snk, Spec-src-snk+. 𝑛 is a fixed number for a
given program. But 𝑡 changes with the

⃗⃗
B values.

Specification of RIH is iteration-based. It reveals the reuse
intervals at each iteration. But it is impossible to collect the
full set of iterations by enumerating all possible

⃗⃗
B values.

To avoid enumerating, we need an approach to generalize
the RIH from a subset of

⃗⃗
B values to all other possible

⃗⃗
B

values. To achieve this goal, we first characterize how the
shape of iteration space changes with

⃗⃗
B in 1○. Then, we

redistribute the iterations from one iteration space to another
by rewriting in 2○.

1○ Characterizing iteration space: The lower and upper
bound expressions of a loop determine the shape of an it-
eration space. As Figure 3a shows, the lower bound 𝑓𝐿 and
upper bound 𝑓𝑈 are functions of induction variables from
outer 𝑘 loops

⃗⃗
I 0∼𝑘−1 and bounds

⃗⃗
B from the input. The pres-

ence of induction variables from the output loop will make
shape analysis hard as the shape may change with different

4
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outer loops’ induction variables. If the current loop has two
outer loops and each has a thousand iterations, the number
of different upper bounds and lower bounds may be one mil-
lion. In this case, to find a program for 𝑓𝐿 or 𝑓𝑈 will need to
generate an input-output example with one million records.

for (int i = 𝑓𝐿 (
⃗⃗
I 0∼𝑘−1,

⃗⃗
B); i ≤ 𝑓𝑈 (

⃗⃗
I 0∼𝑘−1,

⃗⃗
B); 𝑖++) {

...
}

(a) Original loop
𝑓 ′
𝐿
(
⃗⃗
B) = min∀ ⃗⃗I 0∼𝑘−1

(𝑓𝐿 (
⃗⃗
I 0∼𝑘−1,

⃗⃗
B));

𝑓 ′
𝑈
(
⃗⃗
B) = max∀ ⃗⃗I 0∼𝑘−1

(𝑓𝑈 (
⃗⃗
I 0∼𝑘−1,

⃗⃗
B));

for (int i = 𝑓 ′
𝐿
(
⃗⃗
B); i ≤ 𝑓 ′

𝑈
(
⃗⃗
B); i++) {

if (𝑓𝐿 (
⃗⃗
I 0∼𝑘−1,

⃗⃗
B) ≤ i && i ≤ 𝑓𝑈 (

⃗⃗
I 0∼𝑘−1,

⃗⃗
B)) {...}

}

(b) Loop after rectangularization

Figure 3. Iteration space rectangularization

To efficiently characterize the iteration space, we project
iteration space to a rectangular shape, as Figure 3b shows.
Loop bounds will now be the minimal value of 𝑓𝐿 and maxi-
mum value of 𝑓𝑈 among all

⃗⃗
I 0∼𝑘−1 values as 𝑓 ′𝐿 and 𝑓 ′

𝑈
shows.

An if statement will be added to preserve the semantics of
the original loop. The transformed loop will have the same
access traces as the original one by adding dummy iterations
that do not generate access. With all inner loops rectangu-
larized, we move all the if statements to the inner-most loop
to get a rectangular iteration space for nested loops.
Rectangularization makes the shape of iteration space

independent of outer loops’ induction variables. The itera-
tion space only changes with

⃗⃗
B. Its specification is listed as

follows:

∀𝑙𝑜𝑜𝑝, 𝐿𝑙𝑜𝑜𝑝 = PROG𝑚𝑖𝑛 (
⃗⃗
B),𝑈𝑙𝑜𝑜𝑝 = PROG𝑚𝑎𝑥 (

⃗⃗
B)

We can find two programs for each loop in the program to
describe its lower and upper bounds.

2○ Redistributing source iterations: Here we assume that
the redistributing happens from a smaller iteration space to
a larger iteration space. The assumption makes sense as we
would like to find symbolic RIH with a set of small

⃗⃗
B values

to predict the reuses for a larger
⃗⃗
B value. As Figure 4 shows,

the two iterations marked by blue dots in (a) will be clus-
tered without redistributing in (b). While, redistribution will
uniformly fill the larger iteration space with the iterations
from smaller iteration space in (c).
Redistribution for the 𝑖𝑡ℎ loop can be performed by the

following equation.

⃗⃗
I
′
src,𝑖 =

𝑈𝑖 (
⃗⃗
𝑏 1) − 𝐿𝑖 (

⃗⃗
𝑏 1)

𝑈𝑖 (
⃗⃗
𝑏 0) − 𝐿𝑖 (

⃗⃗
𝑏 0)
× (
⃗⃗
I src,𝑖 − 𝐿𝑖 (

⃗⃗
𝑏 0)) + 𝐿𝑖 (

⃗⃗
𝑏 1)

Figure 4. Redistributing iterations for one-dimensional iter-
ation space

Table 1. Input-output examples for Spec-src

input
⃗⃗
I src

⃗⃗
B output RI

value ⃗⃗
𝑐 1

⃗⃗
𝑏 0 𝑟𝑖0⃗⃗

𝑐 1
⃗⃗
𝑏 1 𝑟𝑖1

... ... ...⃗⃗
𝑐 1

⃗⃗
𝑏 𝑛−1 𝑟𝑖𝑛−1

select records where Refsrc= 𝑐0,
⃗⃗
I src=

⃗⃗
𝑐 1

⃗⃗
I src,𝑖 will be replaced by

⃗⃗
I
′
src,𝑖 , which is calculated by sum-

ming the scaled distance from
⃗⃗
I src,𝑖 to lower bound calcu-

lated by
⃗⃗
𝑏 0 and the lower bound calculated with

⃗⃗
𝑏 1.

3.2 Structured input-output examples
With specifications defined, we then trace the program with
different

⃗⃗
B values. The number of different

⃗⃗
B values decides

the number of traces we have. For example, if we provide
three train sizes 4, 8, 16 for each element of

⃗⃗
B and the length

of
⃗⃗
B is 2, we will have 32 = 9 traces. The

⃗⃗
B values will be (4,

4), (4, 8), (4, 16), (8, 4), (8, 8), (8, 16), (16, 4), (16, 8), and (16,
16).

Each trace records all reuses in an execution with the fol-
lowing information: (1) the reference ID Refsrc and iteration⃗⃗
I src of a reuse source. (2) The same information Refsnk,

⃗⃗
I snk

for its reuse sink. (3) Its reuse interval RI. The trace record
format for each reuse is listed as the following:

[Refsrc,
⃗⃗
I src, Refsnk,

⃗⃗
I snk,

⃗⃗
B, RI]

From collected traces, we extract and construct input-
output examples for each specification with different formats.
Here we assume there are n different values for

⃗⃗
B.

Examples for Spec-src. With 𝑛 traces, we extract the
records whose Refsrc = 𝑐0 and

⃗⃗
I src =

⃗⃗
𝑐 1 to form the ex-

amples for RIRefsrc=𝑐0,
⃗⃗
I src=

⃗⃗
𝑐 1

as Table 1 shows. The input
symbols are

⃗⃗
I src,

⃗⃗
B, and the output symbol is RI. All records

share the same source iteration, so all values for
⃗⃗
I src in the

input-output examples are the same. The values for
⃗⃗
B will be

all different as we collect traces with different bound values.

Examples for Spec-src-snk. These examples share the
input and output symbols with the examples for Spec-src.
But the records are selected with an additional restriction for

5



551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

Draft, 2022, Keep improving Dong Chen

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

Table 2. Input-output examples for Spec-src-snk

input
⃗⃗
I src

⃗⃗
B output RI

value ⃗⃗
𝑐 1

⃗⃗
𝑏 0 𝑟𝑖0⃗⃗

𝑐 1
⃗⃗
𝑏 1 𝑟𝑖1

... ... ...⃗⃗
𝑐 1

⃗⃗
𝑏 𝑛−1 𝑟𝑖𝑛−1

select records where Refsrc= 𝑐0,
⃗⃗
I src=

⃗⃗
𝑐 1, Refsnk= 𝑐2

Table 3. Input-output examples for Spec-src-snk+

input
⃗⃗
I src

⃗⃗
I snk

⃗⃗
B output RI

value ⃗⃗
𝑐 1

⃗⃗
𝑖 snk,0

⃗⃗
𝑏 0 𝑟𝑖0⃗⃗

𝑐 1
⃗⃗
𝑖 snk,1

⃗⃗
𝑏 1 𝑟𝑖1

... ... ... ...⃗⃗
𝑐 1

⃗⃗
𝑖 snk,𝑛−1

⃗⃗
𝑏 𝑛−1 𝑟𝑖𝑛−1

input
⃗⃗
I src

⃗⃗
B output

⃗⃗
I snk

value ⃗⃗
𝑐 1

⃗⃗
𝑏 0

⃗⃗
𝑖 snk,0⃗⃗

𝑐 1
⃗⃗
𝑏 1

⃗⃗
𝑖 snk,1

... ... ...⃗⃗
𝑐 1

⃗⃗
𝑏 𝑛−1

⃗⃗
𝑖 snk,𝑛−1

select records where Refsrc= 𝑐0,
⃗⃗
I src=

⃗⃗
𝑐 1, Refsnk= 𝑐2

Refsnk. Table 2 shows the input-output examples generated
for RIRefsrc=𝑐0,

⃗⃗
I src=

⃗⃗
𝑐 1,Refsnk=𝑐2

. Note that the values for RImay
be different from the values in examples in Spec-src as the
reuse sink may not be 𝑐2.

Examples for Spec-src-snk+. These examples extract
the same set of records as Spec-src-snk does but structure
them in a different format. It contains two input-output ex-
amples, one for RI and the other is for

⃗⃗
I snk. The examples

for RI contain one additional input symbol
⃗⃗
I snk which is

consistent with its specification.

Sparsity of values for 𝑅𝐼 . For some
⃗⃗
B values, there may

be no reuse for the selected source iteration. Therefore, we
will assign 0 for RI in this case. 0 entries are essential in the
input-output examples as, together with non-zero entries, it
will indicate the conditions which decide when reuse will
exist.

Examples for iteration space. For each loop, we would
like to discover two programs that describe the lower and
upper bounds. These examples only take

⃗⃗
B as the input and

𝐿 or 𝑈 as output. The number of records in each example
is equal to the number of different

⃗⃗
B values. The values for

outputs are the minimal or the maximum of all values of
induction variable 𝑙 .

Table 4. Input-output examples for iteration space of a loop
with induction variable 𝑙

input
⃗⃗
B output 𝐿

value
⃗⃗
𝑏 0 min(∀𝑙0)⃗⃗
𝑏 1 min(∀𝑙1)
... ...⃗⃗
𝑏 𝑛−1 . min(∀𝑙𝑛−1)

input
⃗⃗
B output 𝑈

value
⃗⃗
𝑏 0 max(∀𝑙0)⃗⃗
𝑏 1 max(∀𝑙1)
... ...⃗⃗
𝑏 𝑛−1 max(∀𝑙𝑛−1)

4 Synthesis Framework
4.1 Unification search with elimination-free DSL
With generated structure input-output examples, we adopt
the syntax-guided search with unification [2, 4, 37].

Search with unification. Algorithm 1 demonstrates the
search process. We first try to find a program that can satisfy
all input-output examples with BottomUpSearch in Line 2.
If a program is not found by BottomUpSearch, we then split
the input-output examples to two sets: left 𝐿 and right 𝑅 in
Line 4. Also, we will generate a predict set 𝑃 , which indicates
whether the original examples go to 𝐿 or 𝑅 by replacing
original outputs with Boolean values. For 𝑃 , we perform a
bottom-up search in Line 5 to learn a Boolean expression for
the condition of an if-then-else statement (ITE). For 𝐿 and 𝑅,
we recursively call Unification function in Line 6 and 7 to
learn an PROG that saftisfy 𝐿 and 𝑅 separately. If all programs
are found for sets 𝑃 ,𝐿 and 𝑅, we return the ITE program in
Line 9. If not, we do backtracking to Line 4 with different
splitting strategies. If all failed, return not found.

For SplitExamples(), we design three different splitting
methods:

1. Zero: If 0 presents in the outputs, we group the exam-
ples with 0 outputs to 𝐿 and others to 𝑅.

2. Freq: Find the most frequent output. Group the most
frequent ones to 𝐿 and others to the 𝑅.

3. Half: Sort the output values and split the examples to
half and half.

Zero rule is to separate the 0 with other RI values. It helps
to learn a condition where reuse happens by grouping all 0s.
Freq andHalf rules are to reduce the diversity of the output
values. The less diverse the outputs are, the more likely to
find a shorter PROG.
BottomUpSearch() uses an iterative algorithm to gradu-

ally grow a set of programs by following a DSL’s syntax.
It first initializes the set of candidate programs in line 17.
The initial candidates usually contain variables and small

6



661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Locality Analysis by
Synthesizing Symbolic Reuse Intervals Draft, 2022, Keep improving

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

Algorithm 1: Unification algorithm
1 Function Unification(𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠):
2 PROG = BottomUpSearch (𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠);
3 if PROG not found then
4 [𝐿, 𝑅, 𝑃] = SplitExamples (𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠);
5 PROG𝑃 = BottomUpSearch (𝑃 );
6 PROG𝐿 = Unification (𝐿) ;
7 PROG𝑅 = Unification (𝑅) ;
8 if PROG𝑃 , PROG𝐿 , PROG𝑅 are found then
9 PROG = ITE PROG𝑃 PROG𝐿 PROG𝑅 ;

10 else
11 backtracking;
12 end
13 end
14 return PROG;
15 End
16 Function BottomUpSearch(𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠):
17 init pList;
18 while CheckCorrect(pList) do
19 pList = Grow(pList);
20 pList = EliminiateEquivalents(pList);
21 end
22 return GetCorrect(pList);
23 End

constants. Then, it checks and grows the program set itera-
tively by a while loop in lines 18- 21. CheckCorrect() scans
all the programs in the 𝑝𝐿𝑖𝑠𝑡 to see whether there is a pro-
gram that satisfies all input-output examples. If yes, the loop
terminates and BottomUpSearch() returns the program in
line 22. If not, Grow()will iterate throw all programs in 𝑝𝐿𝑖𝑠𝑡
and all operations in DSL to construct new programs. The
constructed programs may be equivalent to each other, so in
line 20 we only keep one program among all its equivalents. 1
Note that the number of candidate programs is infinite. We
usually set a time-bound for this growing process.

Elimination-free DSL. The language we defined for syn-
thesis is a simple language for integer expressions that sup-
port branches. The language contains constant numbers
Nums; a set of integer variables Vars; integer operations addi-
tion +, multiplication ×, if-then-else ITE; Boolean operations
negation ¬, and ∧, less than <. It is sufficient to cover all
possible integer functions to describe a reuse interval and
describe the conditions to partition the iteration space. Be-
sides coverage, avoiding generating equivalent programs in
different forms is also a concern for efficiency when defining
the language. We avoid adding inverse operations such as −,
÷, and ∨. We also attach a generation and a lexical order to

1Searching for an integer program with an elimination-free DSL will skip
EliminiateEquivalents()

each program to carefully control the program construction
to avoid generating equivalent programs.

Figure 5 shows the enforced structure for an elimination-
free DSL. For Nums, the initial set of numbers are all prime
numbers with generation assigned 0. Multiplication is the
only method to construct new numbers. Generation con-
straint 𝑔′ − 1 =𝑚𝑎𝑥 (𝑔0, 𝑔1) only allows program construc-
tion by using at least one program from previous generation.

For Times expressions, we do not allow Plus expressions
on both sides of a Times expression due to distributive law.
Only Vars and Nums can serve as operands for a Times ex-
pression. A Num can only appear on the left-hand side of
a nested Times expression. As multiplication is commuta-
tive and associative, we can always move multiple Nums in a
Times expression to the left and apply multiplication to get
a single Num. For Vars, we enforce a lexical order to avoid
generating equivalents by reordering the Vars. For Plus, Num
can only appear once on the left-hand side. The right-hand
side is a nested sum of Times expressions.

The lexical order 𝑙𝑒𝑥 is defined as a vector. Each position
records the number of the appearance of a Var in the expres-
sion. The vector length equals to the number of different
Vars defined in DSL.

• 𝑙𝑒𝑥 of any Num is a all-zero vector.
• 𝑙𝑒𝑥 of Var is a vector with the corresponding element
equals to 1.
• 𝑙𝑒𝑥 of Times and TimesRight is a vector defined by
the sum of 𝑙𝑒𝑥 of all Vars in it.
• 𝑙𝑒𝑥 of Plus and PlusRight returns the 𝑙𝑒𝑥 of the left-
hand side expression.

For Boolean expressions, And is also commutative and as-
sociative. We design a similar structure as Plus does by only
expanding the right-hand side. Lexical orders are defined to
reserve one sorted expression among all its variations.

• 𝑙𝑒𝑥 of And returns the 𝑙𝑒𝑥 of the left-hand side expres-
sion.
• 𝑙𝑒𝑥 of Not returns the 𝑙𝑒𝑥 of its containing And expres-
sion.
• 𝑙𝑒𝑥 of Lt is defined as appending the lex of the left-
hand side expression and right-hand side expression.
Note that when comparing the 𝑙𝑒𝑥 between Lt and
other expressions will be automatically padding to the
same length by 0s.

For Not and Lt, generation alone can guarantee elimination-
free as they are not commutative. We choose not to attach
a Not expression to Lt as the negation a Lt expression can
be generated by exchanging left-hand and right-hand side
expressions and adding 1 to the right. 2

2Note that the two IntExpr expressions should not share common fac-
tors/terms that can be canceled.
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IntExpr =Num | Var | Plus | Times
Num𝑔

′
=Num𝑔0 × Num𝑔1

Times𝑔
′
=(Num | Var)𝑔0,lex0 × TimesRight𝑔1,lex1

TimesRight𝑔
′
=Var𝑔0,lex0 × (Var | TimesRight)𝑔1,lex1

Plus𝑔
′
=(Num | Var | Times)𝑔0,lex0 + PlusRight𝑔1,lex1

PlusRight𝑔
′
=(Var | Times)𝑔0,lex0

+ (Var | Times | PlusRight)𝑔1,lex1

Lt𝑔
′
=IntExpr𝑔0 < IntExpr𝑔1

Not𝑔
′
=¬And𝑔0

And𝑔
′
=Lt𝑔0,lex0 ∧ (And | Not | Lt)𝑔1,lex1

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 :


Num0 ∈ prime numbers

𝑔′ − 1 ==𝑚𝑎𝑥 (𝑔0, 𝑔1)
lex0 < lex1

Figure 5. Elimination-free DSL

4.2 Expectations/biases of the PROGs
Though elimination-free DSL only generates one program
among all its equivalent forms in the domain of Z for all its
input variables. We may still find multiple programs that sat-
isfy all input-output examples, as inputs from the examples
can not cover all possible integers. Thus, we add expecta-
tions/biases to specify the preferred program and prune the
search space.

Reuse-type inferred forms. For a specific iteration, there
are two different types of reuse intervals. One is constant
reuse interval, that the non-zero RI values for different

⃗⃗
Bs

do not change. The other is scaling reuse interval, that the
non-zero RI values for different

⃗⃗
Bs scale with

⃗⃗
B or
⃗⃗
I src.

For constant RI, the preferred program for it is a Num. For
scaling RI, the preferred program should contain

⃗⃗
B or
⃗⃗
I src

for Spec-src, Spec-src-snk, and
⃗⃗
I snk for Spec-src-snk+.

When two programs that both satisfy all input-output exam-
ples during the search, we choose the program based on the
following priorities:

IntExpr: 𝑃 (Num), 𝑃 (
⃗⃗
I snk) < 𝑃 (

⃗⃗
I src), 𝑃 (

⃗⃗
B)

We assign higher priority for programs with variables
than constant programs with Nums only. With our examples
from different

⃗⃗
B values, the chance of having the same RI

value in an input-output example for scaling RI is small.
If a RI scales with

⃗⃗
I src, the chance to successfully sum-

marize it in
⃗⃗
B is small as in the examples, the values for

⃗⃗
I src

are the same for all records but
⃗⃗
B values differ from each

other. For
⃗⃗
B and

⃗⃗
I src, if the coefficients of indices of source

and sink references’
⃗⃗
I src are different or loop bounds are

functions of
⃗⃗
I srcs. The RI is more likely to scale with

⃗⃗
I src,

otherwise we prefer
⃗⃗
B.
⃗⃗
I snk only appears in programs un-

der Spec-src-snk+. As
⃗⃗
I snk −

⃗⃗
I src indicates dependence

distance, we prefer they appear in pairs to assign higher
priorities than Nums.

Code-structure inferred forms. Instead of enumerating
all elimination-free programs, the code structure can help to
reduce the search space.

• Avoid searching with all bound symbols in
⃗⃗
B. As reuses

can only happen between static references to the same
array. For a source reference, only the accesses be-
tween the access from source reference and the access
from its sink reference matter. All loop iterations that
do not overlapping with this path of will be irrelevant.
We can safely ignore the bound symbols only for the
loops that before loop containing the source reference
and after the loop containing the sink reference.
• Bounding the structures of Times expressions. As reuse
interval can be calculated as iteration difference times
the number of accesses per-iteration. For the loops
that the number of memory accesses can be easily
summarized in expressions, we explicitly added them
as biases for Times expressions. For the loops that we
can not infer a bias, we can still bound the exponent
of Times to a small number, such as the depth of the
loops.
• Limiting the value range for Nums. The final expected
IntExpr programs should be linear combinations of
Times expressions. The coefficients should be small
numbers, whose absolute values are less equal to the
maximum number of static references in a loop among
all loops.

4.3 Complexity
The complexity of the unification algorithm depends on the
number of bottom-up searches performed and its complexity.

For BottomUpSearch(), we assume pList has 𝑛 IntExpr
programs and𝑚 BoolExpr programs. The number of IntExpr
programs can be generated is 𝑂 (𝑛2) and the number of
BoolExpr programs can be generated is 𝑂 (𝑚2 + 𝑛2) in one
generation. Though programs grow exponentially, pruning
with provided bias can slow down the growth.

5 Evaluation
This section first demonstrates the synthesized symbolic
reuse intervals, the derived histograms, and miss ratios for
the 5-point stencil program. Then, we evaluate the synthe-
sizer with PolyBench/C 4.2.1 [28]. It contains 30 numeri-
cal kernels extracted from linear algebra, image processing,
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physics simulation, dynamic programming and statistics ap-
plications. 3

5.1 Case study with 5-point stencil
We generate the input-output examples for stencil in Fig-
ure 2a from its traces with B0 equals 4, 8, 10, 12, 20.

Symbolic RI. For source reference 𝑎[𝑖 + 1] [ 𝑗], the reuses
may happen at sink references𝑎[𝑖+1] [ 𝑗],𝑎[𝑖] [ 𝑗] and𝑎[𝑖] [ 𝑗+
1].

For accesses that happen at 𝑎[𝑖 + 1] [ 𝑗] and reused at
𝑎[𝑖 + 1] [ 𝑗], their reuses will happen at next 𝑗 iteration with
reuse interval equals 6. The programs we found for all speci-
fications agree with this analysis. With Spec-src-snk+, we
will find the following program if we force the synthesizer
to find a program with

⃗⃗
I src and

⃗⃗
I snk. It is equivalent to 6.

RI = (6 × (Isnk1 - Isrc1))
Isnk1 = (if (B < j) then 0 else (1 + Isrc1))
For accesses that happen at 𝑎[𝑖 + 1] [ 𝑗] and reused at

𝑎[𝑖] [ 𝑗 + 1], their reuse intervals diverse and range from 93,
99, 105 for B = 20. The programs we found are also different.

RI = ((5 * B) - 7)
((5 * B) - 1)
((6 * B) - 15)

If we are using elimination-free DSL without subtraction,
we can find it’s equivalent form with addition for the same
input-output examples, such as ((4 ∗ 𝐵) + 13) for ((5 * B) - 7).

Tiling. We rewrite the 5-point stencil by adding two ad-
ditional inner loops to tile the iteration space by TS×TS. The
synthesis process is no different but from one variable 𝐵 to
two variables by adding TS. Now we can find reuse intervals
with TS, such as (7 + (𝑇𝑆 + 𝐵)).

Growing speed. Elimination-free DSL and bias play an
essential role in reducing search space. It decides whether
we can successfully find a program within a short amount
of time. Table 5 shows the number of programs constructed
with a baseline DSL and its elimination-free form in the first
three generations. They start with the same set of programs
in the first generation. The number of programs grows expo-
nentially with the baseline DSL but linearly with elimination-
free DSL.

Table 5. Programs grow speeds of a baseline DSL with Plus,
Times and its elimination-free form

Generation 1 2 3
DSL (PLUS, TIMES) 16 287 84314
Elimination-free DSL 16 47 129

3We open-sourced our tool and all synthesized symbolic RIs for PolyBench
in https://github.com/xxx (link removed for double-blind review).
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Figure 6. Prediction with B = 32 by symbolic RIH specified
by Spec-src, Spec-src-snk and Spec-src-snk+

Predicting with RIH. By summarizing synthesized RIs,
we get symbolic RIHs for all three specifications. Figure 6a
shows the predicted reuse interval histograms from all three
RIHs by assigning B to 32 and the trace. The x-axis shows the
values of each reuse interval. All RIHs can capture short reuse
intervals 1 to 6 and the largest reuse interval 181 with very
small percentage errors. For reuse intervals 165 and 169, the
predicted reuse intervals are smaller. There are two possible
reasons: (1) the programwe found has other equivalent forms
that can produce larger values. (2) when the bound changes,
the cache-line granularity has different reuses patterns offset
by around two inner iterations (12 accesses).
Figure 6b shows the miss ratio curves derived from each

histogram by average eviction time [16] for LRU fully asso-
ciative cache. 4 All three miss ratio curves almost overlap
with traced miss ratio curves.

5.2 Examples for PolyBench
We choose five train sizes, 4, 6, 8, 12, 20, for each bound in all
benchmarks. Table 6 shows the size of generated structured
input-output examples for all benchmarks.

The number of symbolic bounds len(
⃗⃗
B) ranges from 1 to

5. len(
⃗⃗
B) and the number of train sizes provided determines

the number of records in each input-output example. For
example, there are 51 records for programs with one sym-
bolic bound and 55 records for programs with five symbolic
bounds.
All three specifications share the same shape examples.

The number of references and induction variables in a pro-
gram determines the number of files in shape examples. It

4The miss ratios can be derived for multi-level set-associated cache [40]
and for parallelized loops [23] with RI distributions.
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Table 6. The size of generated structured input-output examples with 20% sampling rate for cacheline size 32B and data size 8B

Name 2mm 3mm adi atax bicg cholesky correlation covariance deriche doitgen
len(
⃗⃗
B) 4 5 2 2 2 1 2 2 2 3

#Shape 138 198 656 100 100 188 318 180 200 196
#RI𝑠𝑝𝑒𝑐1 555 809 1364 129 128 90 418 258 304 1199
#RI𝑠𝑝𝑒𝑐2/3 581 850 1415 136 132 85 432 270 304 1238
#
⃗⃗
I snk 1699 2508 4179 266 258 210 956 672 608 4785

Name durbin fdtd-2d floyd-warshall gemm gemver gesummv gramschmidt heat-3d jacobi-1d jacobi-2d
len(
⃗⃗
B) 4 5 2 2 2 1 2 2 2 3

#Shape 118 240 150 70 170 110 182 704 128 288
#RI𝑠𝑝𝑒𝑐1 55 214 383 285 224 137 323 4088 112 612
#RI𝑠𝑝𝑒𝑐2/3 53 334 378 296 223 139 343 4218 129 650
#
⃗⃗
I snk 106 668 1134 858 436 264 959 16872 258 1950

Name lu ludcmp mvt nussinov seidel-2d symm syr2d syrk trisolv trmm
len(
⃗⃗
B) 4 5 2 2 2 1 2 2 2 3

#Shape 246 324 76 228 306 132 164 80 76 86
#RI𝑠𝑝𝑒𝑐1 96 114 120 96 510 239 213 286 41 147
#RI𝑠𝑝𝑒𝑐2/3 89 104 120 110 517 238 245 288 38 155
#
⃗⃗
I snk 258 248 240 220 1551 678 721 836 66 436

ranges from 76 (trisolv) to 704 (heat-3d). More loops and
more references lead to more files, such as adi and heat-3d.
For all formats, the numbers of files generated (RI sam-

pled) are similar. We sampled 20% of the source iterations
when generating the input-output examples for each speci-
fication. Note that if the number of source iterations is still
larger than 500 after the sampling, we further reduce the
number of samples to 500. The number of examples for

⃗⃗
I snk

is proportional to #RI𝑠𝑝𝑒𝑐3 by a factor of its vector length.

5.3 Overhead and precision
Different examples have different numbers of variables and
output values. The actual running time will range from sec-
onds to several minutes for each example. Each input-output
example is independent, so we create a thread pool with 60
threads to launch synthesizer instances in parallel on a server
with 64-core Intel(R) Xeon(R) CPU E7-4809 v3 @ 2.00GHz
and 32G memory. It will take days to go through all the
examples generated for all specifications. 5 Note that sym-
bolic RI is only needed to be synthesized once for all future
predictions. The synthesizing overhead can be amortized.
Figure 7 shows the predicted miss ratio curves when set-

ting all bounds to 32 under different specifications for Poly-
Bench. We choose 32 because (1) it enables fast tracing to
generate a baseline to compare. (2) both small and large
bounds reflect errors of symbolic reuse intervals. Larger
bounds only add more iterations than the diversity of reuse
interval values.

5We can further reduce this overhead to hours if we limit the number of
samples for

⃗⃗
I src to 200 for each benchmark/specification. Two hundred

reuses will construct a histogram where each RI represents 0.5% of the
reuses.

From the figure, we can see that all predicted curves cap-
ture the shape of the traced curve. Some of the predicted
curves drop to 0 early, such as 2mm, and heat-3d. It means
the longest predicted reuse is smaller than the traced one.
The following three cases will lead to this: (1) there exists
a saw-tooth reuse pattern, such as accesses trace "abcdd-
cba" with reuse intervals 7 for "a", 5 for "b", 3 for "c", and
1 for "d". A saw-tooth pattern will create a large number
of scattered reuse intervals where no two reuse intervals
share the same value. The constructed input-output exam-
ples may fail to include the longest reuse due to sampling.
(2) the program we found may have lower coefficients or
lower exponents. It scales to a smaller value with a new

⃗⃗
B

value. (3) the synthesizer fails to find the program. For an
input-output example with a large RI value, its program may
need more generations to construct, which takes more time.
Comparing different specifications, we can see that in

most cases, they have similar accuracy. Spec-src-snk per-
forms slightly better than the other two specifictions for
3mm, correlation and performs slightly worse for 2mm, bicg,
covariance. Specifications and the iterations sampled for each
specification affect the performance. Spec-src-snk tends
to have less diverse outputs in the examples than Spec-src,
and Spec-src-snk+ has more variables during the search
by adding the sink iterations than the other two.

Note that we can redo the searches for all failed or inaccu-
racy symbolic RIs for the examples/iterations with different
search times or search biases. The new searched programs
can update a subset of the programs in the RIH without side
effects.
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Figure 7. Miss ratio curves predicted by synthesized reuse intervals
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6 Related work
Static locality analysis. Locality analysis is important

to guide loop transformations, cache hint generation, and
parallelism-locality trade-offs in compilers. A lot of researches
have been exploring it, and the methods are becoming more
andmore sophisticated, fromworking set of loops [13, 19, 38]
to reuse distance [7, 8] and reuse interval [10] of reuses:

Estimating the working set: Wolf and Lam used reuse vec-
tors, which is derived from dependence distance, to calcu-
late the number of memory accesses for the innermost 𝐿
loops [38]. Kennedy and McKinley proposed loop cost func-
tions to calculate the number of cache lines accessed by the
references in the innermost loop [19]. Ferdinand et al. pro-
posed an abstract interpretation approach to track the work-
ing set in a set-associated cache. [3] Touzeau et al. further
improved it by introducing new abstractions [35, 36]. Ghosh
et al. proposed cache miss equations to calculate misses from
reuse vectors [38] for specific cache sizes, which is imple-
mented in SUIF compiler framework [13]. Chatterjee et al.
used Presburger formulas to express misses instead of using
reuse vectors [9]. Bao et al. proposed an integer-set-based
model to calculate misses of polyhedral programs for set-
associative cache [5].
Estimating reuse distance/interval: Cascaval and Padua

used dependence distance to derive a symbolic reuse dis-
tance histogram which can derive all cache size miss ra-
tios [8]. Beyls and D’Hollander proposed the reuse distance
equation based on the polyhedral model to derive a reuse dis-
tance histogram [7]. Gysi et al. proposed an efficient method
to calculate reuse distance by combining symbolic counting
and partial enumeration, which extends reuse distance equa-
tions to non-affine polynomials [15]. Chen et al. generate
specialized loops to sample reuse intervals to construct a
reuse interval histogram. [10]. Instead of using mathemati-
cally models [7, 8, 15], or sampler programs [10] to represent
locality, our work generates iteration-based symbolic reuse
intervals for locality.

Programming by examples. Providing examples aremuch
simpler than writing concrete codes. It has been researched
since 80s. The early systems are trying to capture repetitive
patterns by pattern matching, such as Pygmalion [32], Tin-
ker [22], Eager [11], Cima [25]. PBE can also be encoded as
an inductive learning process by enumerative search [20]. It
is often encoded with version space which learns a compact
representation by provided general-to-specific relation [26]
or first-order logic to find a set of rules to describe the
input-output relation. Such as THESYS learns LISP looping
structures [34], and FlashFill learns string processing pro-
grams [14]. Programming by examples (PBE) can simplify
the programming interface for humans and enable an intel-
ligent system that rewrites its code. Affine reconstruction
of the loop takes memory access traces and can reconstruct
all the static control parts in Polybench [30, 31]. Instead of

reconstructing the original code, our work searches for the
locality representation of code.

7 Conclusion and Future Work
This paper designs and implements the first input-output-
examples-based synthesis system for locality analysis. It con-
structs and searches the candidate programs for reuse inter-
vals with elimination-free DSL, specifications, and biases. The
effectiveness of the system is demonstrated with a 5-point
stencil and PolyBench.

This paper opens many future directions of work.

Beyond sequential scientific loops. Same as other static
locality analysis approaches, this paper focuses on loop-
based codes. To get locality information for a more com-
plex program often requires trace analysis, such as programs
containing alias, parallelism, or irregular accesses (sparse
matrices). It requires additional efforts to encode charac-
ters of input data or thread schedulers to the input-output
examples.

Programanalysis through synthesis. In the past, static
locality analysis requires humans to exam the code, visualize
its execution in mind and build mathematical models. In this
paper, we convert the static locality analysis problem as a
synthesis problem. Similar to program sketching [33], which
leaves the algorithmic details to the synthesizer, our tool
offloads model details to the synthesizer. We may generalize
this approach to other analyses.

Prescriptive cachemanagement. The cachemanagement
in the past is reactive. Recent work shows the benefit of a
prescriptive cache [21, 29]. This work provides symbolic
iteration-based reuse information, which is essential for the
fine-granularity prescription.
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